
Tcl in the Middle

Michael A. Cleverly
Intermountain Healthcare
4646 W Lakepark Blvd
Salt Lake City, Utah 84120
michael.cleverly@intermountainmail.org

September 27, 2007

Abstract

Tcl has long been recognized as an excellent language to glue existing components together to
create new applications. Tcl is just as useful when interjected into the middle of functioning
N-tier “enterprise” systems.

SockSpy[1] is probably the best known[2] example of a “man in the middle” Tcl application.
What may not be as widely appreciated, however, is that Tcl's strong TCP sockets and event-
drive I/Omake construction of custom“man in themiddle solutions” (or proxies) quite straight-
forward.

!ese custom solutions solve real business problems o"en at a fraction of the cost of other
potential solutions.!is paper will look at a handful of examples where Tcl has been employed
in this manner at Intermountain Healthcare.

1 About Intermountain Healthcare
Intermountain Healthcare[3] is a non-pro#t integrated healthcare delivery system head-
quartered in Salt Lake City, Utah and serving communities throughout Utah and southeast-
ern Idaho. Intermountain employs over 26,000 people throughout its system of hospitals,
clinics and healthplans.

Founded in the 1970s, Intermountain has been pioneering the use of information technol-
ogy in healthcare since that time. Intermountain is a recognized leader in its uses of informa-
tion technology in healthcare[4]. In 2005 Intermountain began a 10-year partnership with
GE Healthcare to collaborate and jointly design and develop new electronic health record
technologies[5][6].

2 Facilitating a corporate rebranding initiative
Prior to November 2005 Intermountain Healthcare was known as “Intermountain Health
Care,” or more o"en simply IHC. A major corporate rebranding initiative was launched
in the end of that month to remove the space between the words “health” and “care” and
eliminate references to IHC as an acronym.[7]. Severalmonths later the health plans division

1

formerly known as “IHCHealth Plans” changed its name to SelectHealth[8] completing the
corporate rebranding initiative.

Prior to the rebranding, Intermountain's principal public web site had been powered by Ex-
pressroom, a proprietary Java & XML based Content Management System (CMS). Express-
roomhas had a rocky history, being acquired and then sold by a series of di$erent owners[9].
In short Expressroom was viewed internally as a deprecated technology that needed to be
replaced going forward.

When the rebranding initiative was announced internally, the various departments respon-
sible for content realized they would need to modify substantial amounts of content to rid
all URLs of any reference to the IHC acronym.

!e old home page was located at http://www.ihc.com/xp/ihc/; the new home page was to
be located at http://intermountainhealthcare.org/xp/public/.

While standard web technologies (such as Apache's mod rewrite[10]) could be used to redi-
rect incoming links to legacy URLs two problems would have remained:
1. Extra overhead from absolute links within the existing content that would incur extra

redirection overhead
2. !e user's browser would still show the now verboten acronym when a user moused

over a link
Since the departments responsible for the content did not have the man power to change all
of the Expressroom content prior to the date of the public announcement, Intermountain's
Enterprise Web Operations team adapted the opensource AOLserver[11] web server to act
as a “rebranding proxy.”

For those unfamiliar with the particulars of AOLserver's Tcl API[12], it is (trivial) to delegate
the handling of portions of the URL space to speci#ed Tcl procedures (which are invoked
once for each request).

ns_register_proc GET / rebranding-proxy
ns_register_proc HEAD / rebranding-proxy
ns_register_proc POST / rebranding-proxy

In the above example, any URL requested at or under / (i.e., the whole site) will be processed
by a Tcl procedure named “rebranding-proxy.”

!e algorithm employed by our rebranding-proxy is quite straightforward:
1. Get the requested URL using ns conn url
2. Use regsub to munge the new-style URL (/xp/public) into the old form Expressroom

uses (/xp/ihc)
3. Make a connection to the Expressroom application server and request the munged

URL
4. If the MIME content type returned by Expressroom matches text/* then use string

map to #x up any embedded links using the old-style URLs by translating them to the
new format

5. Return the response to the user passing along the same HTTP response code and
most of the same headers received from Expressroom

It is worth noting that not all response headers should be returned from Expressroom to
the user. Speci#cally, if we've altered any URLs within the HTML (or CSS or Javascript, etc.)
then the Content-Length header will absolutely need to be recalculated.

2

http://www.ihc.com/xp/ihc/
http://intermountainhealthcare.org/xp/public/

3 A restricted authorization proxy for static content
Intermountain Healthcare has standardized (for the time being) on Vignette's Portal (VAP)
and Content Management (VCM) products for audience-focused intranet and extranet dy-
namic portals[13].

In thismodel, portlets runningwithin theVAP application server consume dynamic content
from the VCM database and render it to HTML. !e VAP application servers are front-
ended by multiple Apache web servers. Static VCM content, for performance reasons, is
pushed out directly to the web servers and served by Apache.

As long as the static content was benign images or content meant for public (unauthenti-
cated) consumption, this approach to managing static content was acceptable. Over time as
portal adoption grew, some business units wanted to begin publishing static content that
needed to be restricted more tightly than merely through the obscurity of its URL.

Based on the success of usingAOLserver as a “rebranding proxy” Intermountain's Enterprise
Web Operations team constructed a similar proxy, dubbed “portal-rproxy” to restrict access
to static content to logged in authenticated users. Rather than having Apache retrieve #les
directly from the local #lesystem we used mod proxy[14] to point Apache to an AOLserver
instance running on a non-privileged port bound to the local loopback interface.

Users who are authenticated to VAP will have a session id cookie. !is cookie is only trans-
mited over SSL between the user and the web server to prevent eavesdropping attacks. Be-
cause the SSL connection has already been terminated by Apache, portal-rproxy has access
to it in cleartext. We leverage this fact to call forward to the VAP application server to see if
the session is still valid and active; only if it is, do we serve up the static content from the #le
system (using AOLserver's ns return!le API call).

To make it possible for system administrators to change access restrictions without needing
to modify Tcl code, we created two con#guration #les that are read at runtime: noauth.conf
and restrict-per-site.conf.

!e noauth.conf #le contains a list of regular expression patterns. Blank lines, lines made up
of only whitespace and lines where the #rst non-whitespace character is a # (i.e., comments)
are ignored. Such a #le would look like:

Allow all access to .css stylesheets
\.css$

Logos, etc. for the public areas of the portal
^/Public/Images/

!e restrict-per-site.conf #le contains URL patterns and a list of portal subsite(s) the logged
in user must have access to in order to retrieve the content. A hypothetical entry in such a
#le would look like:

restrict-url "^/Surgery/Schedules/" to physicians
For performance, the results of a succesful check of the validity of a session id can be cached
for a few minutes (to reduce the overhead of repeatedly checking while retrieving multiple
static assets referenced from a single portal page). We recommend keeping this cache win-
dow fairly low (no more than several minutes) to limit the amount of time static content
could be refreshed a"er a user has logged o$.

As with any web application that uses session cookies if an attacker can obtain the session
cookie (i.e., via an Cross Site Scripting (XSS) attack[15]) they e$ectively become the user.

3

Our portal-rproxy neither widens this risk (as compared to having the application server
handle the static content) nor does it mitigate it any.

4 Pseudo source-NAT'ing with tcpsymlinks
!e basic skeleton of a functioning man in the middle proxy in Tcl can easily be written to
#t on a single printed page[16]. For example:

socket -server accept listeningPort

proc accept {client addr port} {
if {[catch {socket -async destHost destPort} server]} then {

shutdown $client
} else {
fconfigure $client -blocking 0 -buffering none -translation binary
fconfigure $server -blocking 0 -buffering none -translation binary
fileevent $client readable [list glue $client $server]
fileevent $server readable [list glue $server $client]

}
}

proc glue {src dst} {
if {[catch {puts -nonewline $dst [read $src]}] ||

[eof $src] || [eof $dst]} then {
shutdown $src $dst

}
}

proc shutdown {args} {
foreach sock $args {catch {close $sock}}

}

Enter the event loop
vwait forever

Just as a symbolic link (symlink) in a #le system serves as “a special type of #le that serves
as a reference to another #le”[17], we introduce the notion of a “tcpsymlink” which is just a
listening port on a particular IP address that proxies tra%c to another address and port.

Our tcpsymlinkd daemon looks in a ports/ directory for #les named either description.port
or description.port.interface. !e description portion of the #lename serves merely as docu-
mentation for those administering the server the daemon is running on.!e daemon listens
on the speci#ed port on either all interfaces or the one speci#ed.

Each ports/ #le is expected to contain one line containing the hostname (or IP address)
followed by a space and a port number. When a new connection comes in a new outgoing
connection is made to this location and the two sockets are “glued” together in much the
same way as the code skeleton above shows.

!e daemon polls periodically (typically every #"een seconds) to see if any of the ports/
con#guration #les have changed, been deleted, or added. Changes only a$ect future connec-
tions; existing connections are not disturbed. If a ports/ #le has been deleted, the listening

4

socket is closed preventing future connections. Likewise if a new ports/ #le has been created,
a new listening socket will be opened.

On occasions when the daemon needs to listen on a prvileged port, it must be started as
root. In these cases it is recommended to drop root privileges as soon as the initial listening
sockets are opened. Either the TclX extension[18] or a small C extension (such as the one
included with TclHttpd[19] or one written using Critcl[20]) can be used to setuid to a non-
privileged user.

5 A Tcl web server with a One Track Mind
OTM[21] is a web server written in Tcl that answers all requests in exactly the same way.
!is turns out to actually be a useful feature, especially when combined with tcpsymlinks.

Instead of having a web server con#gured to front-end an application server, we instead
have the web server talk to a tcpsymlink which in turn talks to the application server. When
it comes time to do periodic scheduled maintenance, a helpful downtime message can be
served up using OTM and the tcpsymlink can be temporarily repointed away from the ap-
plication server. When the downtime is over, the tcpsymlink can be changed back. All of
this can be done without changing any of the con#guration settings of either the web server
or the application server and is potentially less error prone.

6 Front-ending an existing system with SSL
Another man in the middle use where Tcl shines is the ease with which existing applications
can be extended to support SSL connections using the TLS extension[22].

In the simplest case, an application that already calls Tcl's native socket command need only
call ::tls::socket instead, possibly specifying some additional SSL-speci#c con#guration op-
tions.

One recent implementation of an SSL-enabled proxy at Intermountain dealt with a new ra-
diology image viewer. Several hundred physicians (not directly employed by Intermountain
but who have admitting rights at Intermountain hospitals) and their o%ces and clinics have
hardware VPN tunnels that allow them to access certain components of Intermountain's
Electronic Medical Record (EMR) so"ware.

!e existing EMR system, written in Java, added signi#cant overhead to the transmission of
images because it would download the entire image from the radiology system, bu$ering it
in memory before it would send any data back to the web server (which would only then
begin to transmit the data back to the end user's browser).!is added a roughly 10x penalty
compared to directly accessing the radiology system.

Ideally the images would be transfered via an SSL connection over the hardware tunnel. Al-
though the hardwareVPNprovides encryption for the data as it traverses the public internet,
at the other end of the VPN tunnel the tra%c is no longer protected to any eavesdroppers on
the local LAN. End-to-end SSL encryption thus provides additional security against eaves-
dropping.

Using the existing SSL-enabled Apache web servers that front-end the EMR to proxy the
radiology images provided somewhat better performance than having the EMR handle the

5

images directly, but the speed was still 2x to 3x slower than retrieving them directly from
the radiology system (without SSL).

Since the VPN tunnels require con#guration on both ends of the tunnel, adding a new ad-
dress (say that of the radiology system itself) would require coordination between both In-
termountain engineers and the (o"en contracted) IT sta$ that the a%liated physicians em-
ploy to manage their computer equipment. Coordinating and implementing such a change
could easily have consumed 500-man hours of labor.

Instead, using Tcl code basically equivalent to the man in the middle skeleton shown previ-
ously, with socket -server replaced with tls::socket -server running on the same web servers
on a high port (so no VPN tunnels needed to be recon#gured) a%liates were able to access
the radiology image viewer using SSL. !e TLS package was compiled to take advantage of
the hardware SSL acceleration cards already present in the web servers.!e net result is that
there is no noticeable di$erence between requesting an image through our SSL-enabling Tcl
proxy compared to accessing the radiology system (non-SSL) directly.

7 Deterministic load balancing
Our #nal example of using Tcl as a man in the middle proxy involves deterministic load
balancing. If we have a pool of N application servers we choose an application server to route
to by taking the #nal octet of the requester's IP address mod N and using the corresponding
application server. For example:

set servers [list host1 host2 host3 host4]
set octet [lindex [split $ip_addr .] end]
set choice [expr {$octet % [llength $servers]}]
set backend [lindex $servers $choice]

Typically an application server vendorwill supply a “plugin” for variousweb servers[23][24].
!e job of the plug-in is to spread the load across the various backend application server
instances. Since these plug-ins are traditionally proprietary and closed source, their algo-
rithmic decision making process is somewhat opaque.

At Intermountain, we are phasing out our use of the WebLogic plug-in, replacing it with a
Tcl man in themiddle proxy we call “wlpr-proxy” (short for “WebLogic Plugin Replacement
Proxy”). With the vendor's plug-in, active users would occasionally be redirected to a dif-
ferent application server instance for no apparent reason. !is was very frustrating for end
users (clinicians hate to have to repeat entry of lengthy patient notes merely because some
piece of so"ware routed them to the wrong destination). Since the problemwas intermittent
and not reproducible on demand, it posed a frustrating challenge for both quality assurance
(QA) and support personnel alike.

WebLogic's plug-in can be con#gured to log debug data. On a busy web server, however,
all the debug data from various connections quickly becomes intermingled and is nearly
impossible to disentangle. !us, a design requirement for our wlpr-proxy replacement was
the ability to log each connection individually. We chose to have the capability of logging
all client request headers (for GET, HEAD and POST requests) and server response headers
(for GET and HEAD requests). For privacy reasons, we do not log any form data that the
user POSTs or any of the servers response headers to the POST request.

!e ability to reconstruct the precise sequence of end user requests and responses has proven
to be a useful resource for both QA testers and developers. Several instances of obscure

6

corner-case bugs have already been identi#ed via the enhanced logging that wlpr-proxy
provides. In the past, because we lacked visibility, some of these bugs would have slipped
through testing and into production.

8 Two caveat to keep in mind
When writing line-oriented proxies with Tcl versions prior to 8.5, it helps to keep in mind
the potential Denial-of-Service (DoS) condition discussed on the Tcl'ers Wiki by Donald
Porter and George Peter Staplin[25]. In non-blocking I/O mode a readable #leevent will
trigger when new data is available on a channel even if an entire line is not available.

A malicious user could send excessively long lines (without ever sending a newline) forcing
Tcl to eventually exhaust all of its available memory, panic and abend.

With the inclusion of TIP #287[26] in Tcl 8.5, a new subcommand of chan pending can be
used to introspect how much bu$ered data is available to be read and enforce application-
speci#c limits appropriately. For those interested (and some may not be since this problem
is largely theoretical and rarely seen in the wild), prior to Tcl 8.5 several di$erent mitigation
techniques are possible:
1. Write a small C extension to expose the existing Tcl InputBu$ered and use that to

introspect the amount of unread data
2. Set an event some number of seconds into the future using a"er and take some action

(i.e., using read instead of gets or aborting the connection) if a complete line has not
been read by then

3. Rewrite your application to use read instead of gets
!e second caveat to keep in mind is that it is worth remembering to call #locked: “!e
&locked command returns 1 if the most recent input operation on channelId returned less
information than requested because all available input was exhausted[27].”

If you are writing a proxy that inspects HTTP requests the end of the client's request headers
is signi#ed by a blank line[28].When gets returns a blank line it could be because the linewas
blank (end of request headers) or there wasn't a complete line in the bu$er. Calling#locked
(or in Tcl 8.5 chan blocked) allows the program to distinguish these two cases and avoid a
failure to parse subsequent request headers.

For an example showing the use of both chan blocked and chan pending together, see this[29]
December 2006 thread on the comp.lang.tcl newsgroup.

9 Not just IPv4 and TCP
Although the Tcl core itself only supports TCP IPv4 sockets various extensions exist which
provide support for other protocols.
• TclUDP[30] provides UDP sockets and is available for both Windows and Unix sys-

tems
• IOCPSOCK[31] is aWindows extension providing faster IPv4 TCP sockets as well as

IPv6 TCP and IrDA sockets
• Ceptcl[32] is a Unix-centric extension providing UDP, IPv6 and raw IP sockets
• hping3[33] is a low-level packet assembler scriptable with Tcl

7

10 Conclusion
We have seen that custom application-speci#c proxies can be quite easily written in Tcl.
!ese Tcl solutions solve real business problems. Because of Tcl's powerful event-driven I/O
model, Tcl solutions tend to be small and fairly easy to reason about.

References
[1] Poindexter, Tom, Keith Vetter, and Don Libes. “SockSpy.” <http://sourceforge.net/

projects/sockspy/>
[2] Laird, Cameron. “Sockspy Knows TCP/IP” Sys Admin December 2002. <http://www.

samag.com/documents/s=7732/sam0212b/0212b.htm>
[3] About Intermountain: Serving Our Communities. Intermountain Healthcare. <http:

//intermountainhealthcare.org/xp/public/about-intermountain/>
[4] Intermountain Healthcare. “Report to the Community 2006.” <http:

//intermountainhealthcare.org/xp/public/documents/corp/annualreport.pdf>
[5] Kozek, Andrea. “GE Healthcare & Intermountain Health Care To Provide Wide-

Reaching IT System.” 17 February 2005. <http://www.gehealthcare.com/company/
pressroom/releases/pr_release_10225.html>

[6] Cowley, Daron. “GE Healthcare & IHC establish new research center to develop elec-
tronic health record technologies.” 6 July 2005. <http://intermountainhealthcare.org/
xp/public/about-intermountain/news/article26.xml>

[7] Intermountain Communications. “Intermountain Healthcare updates
logo.” 29 November 2005. <http://intermountainhealthcare.org/xp/public/
about-intermountain/news/article6.xml>

[8] Intermountain Communications. “IHC Health Plans has a new name--SelectHealth.”
3 April 2006 <http://intermountainhealthcare.org/xp/public/about-intermountain/
news/article10.xml>

[9] “Expressroom Lives On...” CMS Watch. 21 July 2003. <http://www.cmswatch.com/
Trends/224-Expressroom-Lives-On...>

[10] “Module mod rewrite URL Rewriting Engine.” !e Apache So"ware Foundation.
<http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html>

[11] Davidson, Jim. “Tcl in AOL Digital City: !e Architecture of a Multithreaded High-
Performance Web Site.” 16 February 2000. <http://www.aolserver.com/docs/intro/
tcl2k/html/>

[12] AOLserver Tcl API Reference. <http://www.aolserver.com/docs/devel/tcl/api/>
[13] Smith, Ryan. “Intermountain Healthcare: Audience-Focused Dynamic Portals.” 24

October 2006. <http://www.vignettevillage.com/Austin/ConferenceSessionDetails.
html>

[14] “Apachemodule mod proxy.”!e Apache So"ware Foundation. <http://httpd.apache.
org/docs/1.3/mod/mod_proxy.html>

[15] Fogie, Seth, Jeremiah Grossman, Robert Hansen, Anton Rager, and Petko D. Petkov.
Cross Site Scripting Attacks: XSS Exploits and Defenses. Syngress, 2007.

[16] Cleverly, Michael A. “!e skeleton of a man in the middle.” Weblog Entry. Cleverly
Blogged. 12 March 2007. <http://blog.cleverly.com/permalinks/285.html>

[17] “Symbolic link.” Wikipedia: !e Free Encyclopedia. 17 August 2007. <http://en.
wikipedia.org/wiki/Symbolic_Link>

[18] Lehenbauer, Karl et al. “TclX.” <http://tclx.sourceforge.net/>
[19] Welch, Brent. “TclHttpd.” <http://tclhttpd.sourceforge.net/>

8

http://sourceforge.net/projects/sockspy/
http://sourceforge.net/projects/sockspy/
http://www.samag.com/documents/s=7732/sam0212b/0212b.htm
http://www.samag.com/documents/s=7732/sam0212b/0212b.htm
http://intermountainhealthcare.org/xp/public/about-intermountain/
http://intermountainhealthcare.org/xp/public/about-intermountain/
http://intermountainhealthcare.org/xp/public/documents/corp/annualreport.pdf
http://intermountainhealthcare.org/xp/public/documents/corp/annualreport.pdf
http://www.gehealthcare.com/company/pressroom/releases/pr_release_10225.html
http://www.gehealthcare.com/company/pressroom/releases/pr_release_10225.html
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article26.xml
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article26.xml
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article6.xml
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article6.xml
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article10.xml
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article10.xml
http://www.cmswatch.com/Trends/224-Expressroom-Lives-On...
http://www.cmswatch.com/Trends/224-Expressroom-Lives-On...
http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html
http://www.aolserver.com/docs/intro/tcl2k/html/
http://www.aolserver.com/docs/intro/tcl2k/html/
http://www.aolserver.com/docs/devel/tcl/api/
http://www.vignettevillage.com/Austin/ConferenceSessionDetails.html
http://www.vignettevillage.com/Austin/ConferenceSessionDetails.html
http://httpd.apache.org/docs/1.3/mod/mod_proxy.html
http://httpd.apache.org/docs/1.3/mod/mod_proxy.html
http://blog.cleverly.com/permalinks/285.html
http://en.wikipedia.org/wiki/Symbolic_Link
http://en.wikipedia.org/wiki/Symbolic_Link
http://tclx.sourceforge.net/
http://tclhttpd.sourceforge.net/

[20] Landers, Steve. “Access C library functions using Critcl.” Tcl'ers Wiki. 5 April 2004.
<http://wiki.tcl.tk/11227>

[21] Cleverly,Michael A. “OTM:Aweb server with aOne TrackMind.”Weblog Entry. Clev-
erly Blogged. 26 June 2005. <http://blog.cleverly.com/permalinks/158.html>

[22] Newman, Matt et al. “TLS extension.” <http://tls.sourceforge.net>
[23] “Using Web Server Plug-Ins with WebLogic Server.” BEA WebLogic Server 8.1

Documentation. 2003. <http://e-docs.bea.com/wls/docs81/plugins/>
[24] Cocasse, Sharad andMakarand Kulkarni. “Understanding theWebSphere Application

ServerWeb server plug-in.”October 2003. <http://download.boulder.ibm.com/ibmdl/
pub/software/dw/wes/pdf/WASWebserverplug-in.pdf>

[25] Staplin, George Peter andDon Porter. “Using gets with a socket is a BAD IDEA.” Tcl'ers
Wiki. 24 October 2001. <http://wiki.tcl.tk/1183>

[26] Cleverly, Michael A., Donal K. Fellows, ed. “TIP #287: Add commands for Deter-
mining Size of Bu$ered Data.” Tcl Improvement Proposal. 26 October 2006. <http:
//www.tcl.tk/cgi-bin/tct/tip/287.html>

[27] “&locked manual page.” <http://www.tcl.tk/man/tcl8.4/TclCmd/fblocked.htm>
[28] Fielding, et al. “Hypertext Transfer Protocol--HTTP/1.1.” RFC 2616. June 1999. <http:

//www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5>
[29] Cleverly, Michael A. “Re: TIP #287: Add a Commands [sic] for Determining Size of

Bu$ered Data.” comp.lang.tcl newsgroup. 14 December 2006. <http://groups.google.
com/group/comp.lang.tcl/msg/e5e4d9cf8842a092>

[30] !oyts, Pat and Xiaotao Wu. “TclUDP.” <http://tcludp.sourceforge.net/>
[31] Gravereaux, David. “IOCPSOCK.” <http://iocpsock.sourceforge.net/>
[32] Casso$, Stuart. “Ceptcl.” <http://www3.sympatico.ca/stuart.cassoff/software/>
[33] San#lippo, Salvatore. “Hping3.” <http://wiki.hping.org/>

9

http://wiki.tcl.tk/11227
http://blog.cleverly.com/permalinks/158.html
http://tls.sourceforge.net
http://e-docs.bea.com/wls/docs81/plugins/
http://download.boulder.ibm.com/ibmdl/pub/software/dw/wes/pdf/WASWebserverplug-in.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/wes/pdf/WASWebserverplug-in.pdf
http://wiki.tcl.tk/1183
http://www.tcl.tk/cgi-bin/tct/tip/287.html
http://www.tcl.tk/cgi-bin/tct/tip/287.html
http://www.tcl.tk/man/tcl8.4/TclCmd/fblocked.htm
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5
http://groups.google.com/group/comp.lang.tcl/msg/e5e4d9cf8842a092
http://groups.google.com/group/comp.lang.tcl/msg/e5e4d9cf8842a092
http://tcludp.sourceforge.net/
http://iocpsock.sourceforge.net/
http://www3.sympatico.ca/stuart.cassoff/software/
http://wiki.hping.org/

	 About Intermountain Healthcare
	 Facilitating a corporate rebranding initiative
	 A restricted authorization proxy for static content
	 Pseudo source-NAT'ing with tcpsymlinks
	 A Tcl web server with a One Track Mind
	 Front-ending an existing system with SSL
	 Deterministic load balancing
	 Two caveat to keep in mind
	 Not just IPv4 and TCP
	 Conclusion

